

# **ELECTRICAL & MECHANICAL**

# **FULL-LOAD CURRENTS**

Three-Phase AC induction squirrel cage and wound rotor motors

| HP               | 115V            | 200V               | 230V              | 460V              | 575V              | 2300V          | 4000V             |
|------------------|-----------------|--------------------|-------------------|-------------------|-------------------|----------------|-------------------|
| 1/2<br>3/4<br>1  | 4<br>5.6<br>7.2 | 2.3<br>3.2<br>4.15 | 2<br>2.8<br>3.6   | 1<br>1.4<br>1.8   | .8<br>1.1<br>1.4  |                |                   |
| 1 1/2<br>2<br>3  | 10.4<br>13.6    | 6<br>7.8<br>11     | 5.2<br>6.8<br>9.6 | 2.6<br>3.4<br>4.8 | 2.1<br>2.7<br>3.9 |                |                   |
| 5<br>7 1/2<br>10 |                 | 17.5<br>25<br>32   | 15.2<br>22<br>28  | 7.6<br>11<br>14   | 6.1<br>9<br>11    |                |                   |
| 15<br>20<br>25   |                 | 48<br>62<br>78     | 42<br>54<br>68    | 21<br>27<br>34    | 17<br>22<br>27    |                |                   |
| 30<br>40<br>50   |                 | 92<br>120<br>150   | 80<br>104<br>130  | 40<br>52<br>65    | 32<br>41<br>52    |                |                   |
| 60<br>75<br>100  |                 | 177<br>221<br>285  | 154<br>192<br>248 | 77<br>96<br>124   | 62<br>77<br>99    | 16<br>20<br>26 | 8.8<br>11<br>14.3 |

# **FULL-LOAD CURRENTS**

**Direct-Current Motors (running at base speed)** 


| HP                | 90 <b>V</b>       | 120V               | 180V              | 240V              | 500V             | 550V           |
|-------------------|-------------------|--------------------|-------------------|-------------------|------------------|----------------|
| 1/4<br>1/3<br>1/2 | 4.0<br>5.2<br>6.8 | 3.1<br>4.1<br>5.4  | 2.0<br>2.6<br>3.4 | 1.6<br>2.0<br>2.7 |                  |                |
| 3/4<br>1<br>1 1/2 | 9.6<br>12.2       | 7.6<br>9.5<br>13.2 | 4.8<br>6.1<br>8.3 | 3.8<br>4.7<br>6.6 |                  |                |
| 2<br>3<br>5       |                   | 17<br>25<br>40     | 10.8<br>16<br>27  | 8.5<br>12.2<br>20 |                  | 12.2           |
| 7 1/2<br>10<br>15 |                   | 58<br>76           | 39<br>51          | 29<br>38<br>55    | 13.6<br>18<br>27 | 16<br>16<br>24 |
| 20<br>25<br>30    |                   |                    |                   | 72<br>89<br>106   | 34<br>43<br>51   | 31<br>38<br>46 |
| 40<br>50<br>60    |                   |                    |                   | 140<br>173<br>206 | 67<br>83<br>99   | 61<br>75<br>90 |

I×R

<u>Р</u>

12

√P×R



$$WK_{load}^{2} \text{ (at motor shaft)} = \frac{WK_{load}^{2} \times Load \ RPM^{2}}{Motor \ RPM^{2}}$$



| $WK_{load}^{2} \text{ (at motor shaft)} = \frac{WK_{load}^{2} \times Load RPM^{2}}{Motor RPM^{2}}$                              | 308×T <sub>a</sub>                                            |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Chain Tension ( $\mathbb{b}_{i}$ ) = $\frac{33000 \times hp}{Chain Speed}$                                                      | Sync RPM = $\frac{\text{freq} \times 120}{\text{# of Poles}}$ |
|                                                                                                                                 | $WK^2 = WK_{rotor}^2 + WK_{load}^2$                           |
| % Slip = Sync RPM-Full Load RPM ×100 Sync RPM                                                                                   | τ= <u>hp×63025</u><br>RPM                                     |
| $\tau_{a} = \frac{[(\tau_{\text{full-load}} + \tau_{\text{breakdown}})/2] + \tau_{\text{breakdown}} + \tau_{\text{locked}}}{2}$ |                                                               |

# **KEY**

# **FULL-LOAD CURRENTS**

| Single-Phase AC Motors |      |      |      |  |  |
|------------------------|------|------|------|--|--|
| HP                     | 115V | 200V | 230V |  |  |
| 1/6                    | 4.4  | 2.5  | 2.2  |  |  |
| 1/4                    | 5.8  | 3.3  | 2.9  |  |  |
| 1/3                    | 7.2  | 4.1  | 3.6  |  |  |
| 1/2                    | 9.8  | 5.6  | 4.9  |  |  |
| 3/4                    | 13.8 | 7.9  | 6.9  |  |  |
| 1                      | 16   | 9.2  | 8    |  |  |
| 1 1/2                  | 20   | 11.5 | 10   |  |  |
| 2                      | 24   | 13.8 | 12   |  |  |
| 3                      | 34   | 19.6 | 17   |  |  |
| 5                      | 56   | 32.2 | 28   |  |  |
| 7 1/2                  | 80   | 46   | 40   |  |  |

57.5

### **POWER**

Single-Phase AC Circuits

$$hp = \frac{I \times V \times \eta \times PF}{746}$$

$$P(kW) = \frac{I \times V \times PF}{1000}$$

$$I = \frac{746 \times hp}{V \times \eta \times PF}$$

$$\eta = \frac{746 \times hp}{1 \times V \times PF}$$

$$PF = \frac{P(\text{input W})}{I \times V}$$

### **POWER**

Three-Phase AC Circuits

$$hp = \frac{I \times V \times \eta \times PF \times 1.732}{746}$$

$$P(kW) = \frac{I \times V \times PF \times 1.732}{1000}$$

$$I = \frac{746 \times hp}{V \times \eta \times PF \times 1.732}$$

$$\eta = \frac{746 \times hp}{1 \times V \times PF \times 1.732}$$

$$PF = \frac{P(input W)}{I \times V \times 1.732}$$

# **POWER Fans & Blowers**

I×V

 $I^2 \times R$ 

 $\sqrt{\frac{P}{R}}$ 

$$P = \frac{Q \times p}{229 \times \eta}$$

# **POWER**

**Pumps** 

$$P = \frac{Q \times H \times S}{3960 \times \eta}$$

# power (horsepower)

power (watt)

current (amp)

voltage (volt)

resistance (ohm) efficiency

PF power factor

pressure (psi) flow rate (cfm)

head (ft)

specific gravity of fluid

inertia (lb<sub>m</sub> ft<sup>2</sup>) torque (in Ib<sub>f</sub>)

avg. accel. torque (in lb<sub>f</sub>)

100

10

$$hp = \frac{I \times V \times \eta}{746}$$

50

$$P = I \times V$$
  $I = \frac{P}{V}$ 

$$I = \frac{P}{V}$$