ELECTRICAL & MECHANICAL # **FULL-LOAD CURRENTS** Three-Phase AC induction squirrel cage and wound rotor motors | HP | 115V | 200V | 230V | 460V | 575V | 2300V | 4000V | |------------------|-----------------|--------------------|-------------------|-------------------|-------------------|----------------|-------------------| | 1/2
3/4
1 | 4
5.6
7.2 | 2.3
3.2
4.15 | 2
2.8
3.6 | 1
1.4
1.8 | .8
1.1
1.4 | | | | 1 1/2
2
3 | 10.4
13.6 | 6
7.8
11 | 5.2
6.8
9.6 | 2.6
3.4
4.8 | 2.1
2.7
3.9 | | | | 5
7 1/2
10 | | 17.5
25
32 | 15.2
22
28 | 7.6
11
14 | 6.1
9
11 | | | | 15
20
25 | | 48
62
78 | 42
54
68 | 21
27
34 | 17
22
27 | | | | 30
40
50 | | 92
120
150 | 80
104
130 | 40
52
65 | 32
41
52 | | | | 60
75
100 | | 177
221
285 | 154
192
248 | 77
96
124 | 62
77
99 | 16
20
26 | 8.8
11
14.3 | # **FULL-LOAD CURRENTS** **Direct-Current Motors (running at base speed)** | HP | 90 V | 120V | 180V | 240V | 500V | 550V | |-------------------|-------------------|--------------------|-------------------|-------------------|------------------|----------------| | 1/4
1/3
1/2 | 4.0
5.2
6.8 | 3.1
4.1
5.4 | 2.0
2.6
3.4 | 1.6
2.0
2.7 | | | | 3/4
1
1 1/2 | 9.6
12.2 | 7.6
9.5
13.2 | 4.8
6.1
8.3 | 3.8
4.7
6.6 | | | | 2
3
5 | | 17
25
40 | 10.8
16
27 | 8.5
12.2
20 | | 12.2 | | 7 1/2
10
15 | | 58
76 | 39
51 | 29
38
55 | 13.6
18
27 | 16
16
24 | | 20
25
30 | | | | 72
89
106 | 34
43
51 | 31
38
46 | | 40
50
60 | | | | 140
173
206 | 67
83
99 | 61
75
90 | I×R <u>Р</u> 12 √P×R $$WK_{load}^{2} \text{ (at motor shaft)} = \frac{WK_{load}^{2} \times Load \ RPM^{2}}{Motor \ RPM^{2}}$$ | $WK_{load}^{2} \text{ (at motor shaft)} = \frac{WK_{load}^{2} \times Load RPM^{2}}{Motor RPM^{2}}$ | 308×T _a | |---|---| | Chain Tension (\mathbb{b}_{i}) = $\frac{33000 \times hp}{Chain Speed}$ | Sync RPM = $\frac{\text{freq} \times 120}{\text{# of Poles}}$ | | | $WK^2 = WK_{rotor}^2 + WK_{load}^2$ | | % Slip = Sync RPM-Full Load RPM ×100 Sync RPM | τ= <u>hp×63025</u>
RPM | | $\tau_{a} = \frac{[(\tau_{\text{full-load}} + \tau_{\text{breakdown}})/2] + \tau_{\text{breakdown}} + \tau_{\text{locked}}}{2}$ | | # **KEY** # **FULL-LOAD CURRENTS** | Single-Phase AC Motors | | | | | | |------------------------|------|------|------|--|--| | HP | 115V | 200V | 230V | | | | 1/6 | 4.4 | 2.5 | 2.2 | | | | 1/4 | 5.8 | 3.3 | 2.9 | | | | 1/3 | 7.2 | 4.1 | 3.6 | | | | 1/2 | 9.8 | 5.6 | 4.9 | | | | 3/4 | 13.8 | 7.9 | 6.9 | | | | 1 | 16 | 9.2 | 8 | | | | 1 1/2 | 20 | 11.5 | 10 | | | | 2 | 24 | 13.8 | 12 | | | | 3 | 34 | 19.6 | 17 | | | | 5 | 56 | 32.2 | 28 | | | | 7 1/2 | 80 | 46 | 40 | | | 57.5 ### **POWER** Single-Phase AC Circuits $$hp = \frac{I \times V \times \eta \times PF}{746}$$ $$P(kW) = \frac{I \times V \times PF}{1000}$$ $$I = \frac{746 \times hp}{V \times \eta \times PF}$$ $$\eta = \frac{746 \times hp}{1 \times V \times PF}$$ $$PF = \frac{P(\text{input W})}{I \times V}$$ ### **POWER** Three-Phase AC Circuits $$hp = \frac{I \times V \times \eta \times PF \times 1.732}{746}$$ $$P(kW) = \frac{I \times V \times PF \times 1.732}{1000}$$ $$I = \frac{746 \times hp}{V \times \eta \times PF \times 1.732}$$ $$\eta = \frac{746 \times hp}{1 \times V \times PF \times 1.732}$$ $$PF = \frac{P(input W)}{I \times V \times 1.732}$$ # **POWER Fans & Blowers** I×V $I^2 \times R$ $\sqrt{\frac{P}{R}}$ $$P = \frac{Q \times p}{229 \times \eta}$$ # **POWER** **Pumps** $$P = \frac{Q \times H \times S}{3960 \times \eta}$$ # power (horsepower) power (watt) current (amp) voltage (volt) resistance (ohm) efficiency PF power factor pressure (psi) flow rate (cfm) head (ft) specific gravity of fluid inertia (lb_m ft²) torque (in Ib_f) avg. accel. torque (in lb_f) 100 10 $$hp = \frac{I \times V \times \eta}{746}$$ 50 $$P = I \times V$$ $I = \frac{P}{V}$ $$I = \frac{P}{V}$$